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SUMMARY 

A complete first-order model and locally analytic solution method are developed to analyse the effects of 
mean flow incidence and aerofoil camber and thickness on the incompressible aerodynamics of an 
oscillating aerofoil. This method incorporates analytic solutions, with the discrete algebraic equations which 
represent the differential flow field equations obtained from analytic solutions in individual grid elements. 
The velocity potential is separated into steady and unsteady harmonic parts, with the unsteady potential 
further decomposed into circulatory and non-circulatory components. These velocity potentials are in- 
dividually described by Laplace equations. The steady velocity potential is independent of the unsteady flow 
field. However, the unsteady flow is coupled to the steady flow field through the boundary conditions on the 
oscillating aerofoil. A body-fitted computational grid is then utilized. Solutions for both the steady and the 
coupled unsteady flow fields are obtained by a locally analytic numerical method in which locally analytic 
solutions in individual grid elements are determined. The complete flow field solution is obtained by 
assembling these locally analytic solutions. This model and solution method are shown to accurately predict 
the Theodorsen oscillating flat plate classical solution. Locally analytic solutions for a series of Joukowski 
aerofoils demonstrate the strong coupling between the aerofoil unsteady and steady flow fields, i.e. the strong 
dependence of the oscillating aerofoil aerodynamics on the steady flow effects of mean flow incidence angle 
and aerofoil camber and thickness. 
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INTRODUCTION 

To predict the susceptibility to flutter, the unsteady aerodynamic forces and moments acting on a 
harmonically oscillating aerofoil must be determined. This enables the unsteady aerodynamic 
work being fed into the aerofoil to be calculated and an assessment made as to whether this is 
sufficient to overcome the available mechanical damping. 

The methods currently in use for this unsteady aerodynamic calculation are two-dimensional 
and based on thin aerofoil theory. Typically, flat plate aerofoils with no thickness at  zero 
incidence to a mean uniform and parallel steady flow are considered. The unsteady flow field is 
completely uncoupled from the uniform steady flow by considering the unsteady aerodynamics 
due to the oscillating aerofoil to be a small perturbation to the uniform parallel steady flow. The 
linearized unsteady flow field is then calculated using conformal mapping techniques and 
circulation theory. 
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In many applications, however, aerofoils with non-zero mean incidence, arbitrary shape and 
large camber must be considered. Horlock' extended the approach of Sears' to consider a flat 
plate aerofoil at small angle of attack. Naumann and Yeh3 extended Horlock's analysis to 
consider a thin aerofoil with constant small camber. These analyses showed that the unsteady 
aerodynamic forces acting on an aerofoil were affected by both the small incidence angle and the 
small aerofoil camber. However, Horlock neglects second-order terms, following Sears, and also 
assumes a small angle of attack. Thus these results are approximate and cannot be extended to 
finite incidence angles or large camber. The analysis of Goldstein and Atassi4 for thin lifting 
aerofoils subject to a periodic gust showed the inaccuracy of Horlock's unsteady lift result. 

Atassi and Akai' developed an analysis for moderate-camber aerofoils in cascade oscillating in 
a uniform incompressible flow field. In the cohplex plane two singular integral equations are 
obtained for the density distribution of singularities along the aerofoil contours and wakes. These 
equations are coupled through the Kutta condition, with the use of a numerical integral solution 
procedure. 

All of the above noted incompressible harmonic unsteady aerodynamic analyses utilize 
classical aerofoil techniques or extensions thereof. This results in solutions in the form of integral 
equations, with the determination of general analytical solutions a formidable mathematical task. 
Although such classical models and integral solution techniques are of value, numerical tech- 
niques permit the mathematical modelling of the flow physics to be extended and significantly 
enhanced. However, even though numerical methods have been developed and utilized to predict 
steady aerofoil flow fields with impressive results, relatively less interest has been shown in 
developing and applying numerical methods to unsteady flows. 

In this paper a complete first-order mathematical model is developed to analyse the effects of 
mean flow incidence and aerofoil camber and thickness on the inviscid incompressible aerody- 
namics of a hartnonically oscillating aerofoil. Also, a locally analytic solution method is developed 
for both the unsteady and the steady flow fields. In this method analytic solutions in individual 
grid elements are determined, with the complete flow field solution obtained by assembly of these 
locally analytic solutions. 

A velocity potential formulation is utilized for the mathematical model. The velocity potential 
is separated into steady and unsteady harmonic parts, with the unsteady potential further 
decomposed into circulatory and non-circulatory components. These velocity potentials are 
individually described by Laplace equations. The steady velocity potential is independent of the 
unsteady flow field. However, the unsteady flow is coupled to the steady flow field through the 
boundary conditions on the surfaces of the oscillating aerofoil. 

The various numerical methods utilized to solve partial differential equations are distinguished 
from one another by the means used to derive the corresponding algebraic representation of the 
differential equations. In finite difference methods Taylor series expansion and control volume 
formulations are most often used. For finite element methods variational formulations and the 
method of weighted residuals are employed. In the locally analytic method the discrete algebraic 
equations are obtained from the analytical solution in each local grid element. 

The concept of locally linearized solutions was applied to the problem of the steady inviscid 
transonic flow past thin aerofoils by Spreiter et aL6-* and subsequently extended to oscillating 
aerofoils in transonic flow by Stahara and S ~ r e i t e r . ~  Also Dowell" developed a rational 
approximate method for unsteady transonic flow which is broadly related to the local lineariz- 
ation concept. The locally analytic method for steady two-dimensional fluid flow and heat 
transfer problems was initially developed by Chen et al.' ' -I4 They have shown that the locally 
analytic method has several advantages over the finite difference and finite element methods, In 
particular, it is less dependent on grid size and the system of algebraic equations is relatively 
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stable. Also, since the solution is analytic, it is differentiable in any direction and is a continuous 
function in the solution domain. The disadvantage of the local analytic method is that, as will be 
seen, mathematical analysis is required before programming. 

MATHEMATICAL MODEL 

The two-dimensional flow past a thick cambered aerofoil executing torsion mode oscillations 
together with the non-dimensional Cartesian co-ordinate system is schematically depicted in 
Figure 1. The steady and uniform far-field flow is specified by the velocity vector U,, with the 
mean incidence angle to the aerofoil, m0, specified by the chordwise and normal far-field velocity 
components, U, and V,. 

For an incompressible inviscid fluid, a velocity potential function can be defined. The complete 
flow field is then described by a Laplace equation: 

(1) v2Q, = 0, 

where Q, = Q, ( X ,  Y, t )  is the velocity potential. 
The Laplace equation is linear. Thus the velocity potential can be decomposed into com- 

ponents by the superposition principle. In particular, the velocity potential is decomposed into 
steady and unsteady components, Q0(X, Y )  and W(X, Y, t). The unsteady potential is assumed to 
have a harmonic time dependence of frequency o and is further decomposed into non-circulatory 
and circulatory components, WNc(X, Y) and Wc(X, Y): 

(2) @(x,  Y, t)=Q0(x, Y)+eik'[WN,(X, Y)+T'Wc(X, Y ) ] ,  

where V2cDO=O, V2WNc=0, V2@:=O, r' is the unknown unsteady flow circulation and k is the 
reduced frequency, k = wb f U ,. 

To complete the mathematical model, far-field, aerofoil surface and wake-dividing stream- 
line boundary conditions must be specified for the three velocity potential functions Q 0 ( X ,  Y), 
Q,;Uc(X, Y) and Wc(X, Y ) .  

In the far field the flow is steady and uniform. Hence both the oscillatory component of the 
solution and the unsteady circulation vanish in the far field. Thus the velocity potential boundary 
conditions are as given in equation (3). It should be noted that, for a flat plate or symmetric 
aerofoil at zero incidence, the steady circulation I' is zero. 

Figure 1. Schematic of the flow field 
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where r is the unknown steady flow circulation and 0 is the standard polar co-ordinate. 

equal to that of the aerofoil: 
The aerofoil surface boundary conditions specify that the normal velocity of the flow field is 

= W’(X ,  Y ) =  upwash, (44 

where n denotes the surface unit normal. 
The upwash on the aerofoil, W’(X ,  Y ) ,  is a function of both the position of the aerofoil and the 

steady flow field. Thus it is this boundary condition which couples the unsteady flow field to the 
steady aerodynamics. For an aerofoil executing harmonic torsion mode oscillations about an 
elastic axis location at X ,  as measured from the leading edge, the upwash on the surfaces of the 
aerofoil is defined by 

where U ,  = U,(X,  Y )  and V ,  = V, (X ,  Y )  are the steady chordwise and normal velocity com- 
ponents determined from the solution for the steady velocity potential @,,(X, Y ) , f ( X )  denotes the 
aerofoil profile and ii is the amplitude of the torsional oscillations. 

The steady and unsteady velocity potentials are both discontinuous along the aerofoil wake- 
dividing streamline. The steady flow discontinuity is equal to the steady circulation r: 

A@oJwake = @: - @; = = A@oITE, t 6) 

where TE denotes the aerofoil trailing edge and the superscripts + and - denote the upper and 
lower aerofoil surfaces respectively. 

The unsteady flow discontinuity is satisfied with a continuous non-circulatory velocity poten- 
tial and a discontinuous circulatory velocity potential. The circulatory velocity potential dis- 
continuity is specified by requiring the pressure to be continuous across the wake and then 
utilizing the unsteady Bernoulli equation to relate the velocity potential and the pressure. For 
harmonic torsion mode aerofoil oscillations, the resulting circulatory potential wake streamline 
discontinuity is given in equation (7). Also specified is the continuity of the non-circulatory 
velocity potential along the wake streamline. 
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In addition, the Kutta condition is applied to both the steady and the unsteady flow fields. This 
enables the steady and unsteady circulation constants, r and I-', to be determined. For the steady 
flow field, the Kutta condition is satisfied by requiring the chordwise velocity components on the 
upper and lower aerofoil surfaces to be equal in magnitude at the trailing edge: 

(8) I u & E I  = I U i T E I .  

The Kutta condition is imposed on the unsteady flow field by requiring no unsteady pressure 
difference across the aerofoil chordline at  the trailing edge. The corresponding relation for the 
trailing-edge unsteady velocity potential difference is determined from the unsteady Bernoulli 
equation: 

The unsteady dependent variable of primary interest is the unsteady pressure. This is deter- 
mined from the solution for the steady flow field, the unsteady velocity potential and the unsteady 
Bernoulli equation. Also, the unsteady aerofoil surface boundary conditions were applied on the 
mean position of the aerofoil (equation (5)). After transfer to the instantaneous aerofoil position, 

(10) 
au avo P' = - V@,,.VW - ikW +>( - uox + vo Y)---( vox + u, Y), 
a y  ay 

where U o ( X ,  Y )  and V o ( X ,  Y )  are the chordwise and normal steady velocity components and the 
last two terms account for the transfer of the pressure value from the mean position of the aerofoil 
to its instantaneous position. 

COMPUTATIONAL DOMAIN 

Computational grid 

The boundary-fitted computational grid developed by Thompson et a l l 5  is utilized for the 
numerical solution because of its general availability. This method permits grid points to be 
specified along the entire boundary of the computational plane. As depicted in Figure 2, the 
boundary in the physical plane is denoted by the curve abcdefghia and encompasses the aerofoil, 
its wake and the far field. The application of this grid generation technique results in a smoothly 
spaced, non-overlapping grid at the interior points in the transformed (5 ,  q)  plane. A typical 
boundary-fitted grid for a Joukowski aerofoil is shown in Figure 3. 

Laplace equations describe the complete flow field including the unknown velocity potentials 
(Do, WNc and Wc (equation (2)). In the transformed (5,  q )  co-ordinate system the Laplace equation 
takes the following non-homogeneous form: 

where @is a shorthand method of writing these three velocity potentials in the transformed plane, 
i.e. @ denotes @,(5 ,  yl), WNc(5, v )  or Wc(5, q); P (5 ,  yl) contains the cross-derivative term a2@,/a@yl 
and the coefficients a, p and y are functions of the transformed co-ordinates 5 and yl which are 
treated as constants in each individual grid element. 
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(b) Transformed Plane 

Figure 2. Body-fitted co-ordinate transformation 

Analytic solution 

homogeneous equation by defining a new dependent variable &((, 9): 
To obtain the analytic solution to the transformed Laplace equation, it is first rewirtten as a 

where 

The general solution for 6 is determined by separation of variables and is given by 

w, d = CAI cos (At) + A ,  sin (At)] CB, cash ( P d +  B,  sinh (pr)l, (13) 

where p = [(y’ + aB2 + A’)/GI]’’~ and A, A , ,  A,, B ,  and B, are constants to be determined from the 
boundary conditions. 
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Figure 3. Body-fitted computational grid for a Joukowski aerofoil 

LOCALLY ANALYTIC METHOD 

In the locally analytic method analytic solutions of the partial differential equations are 
incorporated into the numerical technique. Analytic solutions in individual computational grid 
elements are determined by applying proper boundary conditions on each element to evaluate the 
unknown constants in the general velocity potential solution specified in equation (13). The 
solution to the global problem is then determined through the application of the global boundary 
conditions and the assembly of the locally analytic solutions. 

Grid element boundary conditions 

A typical computational grid element is schematically depicted in Figure 4. The local element 
boundary conditions specify the values of the various velocity potentials at the eight boundary 
nodal points. However, to obtain unique analytic solutions to the Laplace equation in this 
element, i.e. to determine the values of the integration constants in the general solution for each 
element, continuous boundary conditions are required on all four boundaries. For numerical 
purposes, these boundary conditions are expressed in an implicit formulation in terms of the three 
known nodal values on each element boundary. In particular, a combination of a linear and an 
exponential function are utilized on each boundary as they satisfy the Laplace equation: 

6(& 1) = u\') ec + u\') 4 + a\'), 

6(1, q) = ui2) eq + ui2) q + 
@(<, - 1) = u13) et + uL3) 4 + a\3), 

@( - 1, q )  = eq + a\4) q + 

( 144  
(14b) 
(144 
(144 

where the constants uy), u?) and ug) are determined from the known values at the three nodal 
points on each boundary. 
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Figure 4. Local computational grid element 

Locally analytic solution 

The general analytic solution to the Laplace equation given in (13) is valid in individual grid 
elements as well as over the complete flow region. To determine the relationship between the 
velocity potential at  the center of the typical grid element (Figure 4) and its surrounding values, 
the superposition principle is used to decompose the solution for 6 into four components, each 
having only the non-homogeneous boundary condition: 

a, 

QL v l )  = 1 {An1 sinh Cpfl(rl + 111 sin CA,(t + 111 +A,,, sinh Cp,(r - 111 sin [A,(( + 111 

+ A,, sinh [pb(t + l)] sin [A,(q + I)] + An4 sinh [pLb(S - I)] sin [ A,(q + I)]}, 
n =  1 

(15) 
where 

A,, = nn/2, p,, = [(y2 + D'ct + A,2)/a] l/', ph = (y2 + 8% + ~ ; c t ) ' / ~  

The application of the local boundary conditions (equation (14)) together with the orthog- 
onality of the Fourier series leads to the following values for A,,l: 

A ,  = cin,@(19 1) + c2n76(1, 0) + C3,,6(1, - 1) + C4,,6(0, - 1) 
+ c 4 -  1, - 1)  + C6,,,6( - L O )  + C7,,6(  - 1, l )  + C8,,6(0, I), (16) 

where the constants Cln,, . . . , C8,, are functions of the ay), a$) and at )  boundary constants. 

the value of 6 at the centre of the element can be written as 
With the analytic solution in an individual grid element thus specified (equations (15) and (16)), 

a, 

6(09 0) = 1 { [ (An1 - -4,) sinh (p,) + (Afl3 - A,,J sinh (pb)l sin (A,,)}. 

6 ( O , O ) = C 1 6 ( 1 ,  1)+C2@(1,0)+C36(1, - 1)+C4&q0, - 1) 

(17) 
n =  1 

Substituting for the A,,, terms (equation (16)) leads to 

+ c56( - 1, - 1 )  + C6@( - LO) + c76( - 1, I )  + C&O, 11, (1 8) 
where the constants Cl, C2, . . . , Cg are functions of the ay), a$) and a$) boundary constants as 
well as the transformed co-ordinate functions CL, f l  and y. 

This solution for 6 at the centre point is rewritten in term of the original dependent variable @ 
as 
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q o ,  O)= c, @(l, 1)+ CZ@( 1,O) + C3@( 1, - 1) + C,@(O, - 1) 

+C,@(- l ,  - l )+C6@(- l ,o)+c ,@(- l ,  l)+C,@(O, l), (19) 
where the constants C,, C,, . . . , c, are again functions of the U P ) ,  a$) and at) boundary constants 
as well as the transformed co-ordinate functions a, B and y. 

Thus, the local analytic algebraic equation relating the value of the velocity potential at the 
centre of the computational element to its neighboring eight known nodal values has been 
completely determined. 

Computational procedure 

The above technique is applied to adjacent grid elements, with the boundary nodal point 
considered as the interior point. For a general grid element with centre at (i, j ) ,  the resulting 
algebraic relation between the centre value of the velocity potential and its eight surrounding 
nodal values is given by 

@(i, j )  = ci + 1 ,  j +  ,@(i + 1, j + 1) + Ci+ ,j@(i + 1, j )  + Ci + 1, - l@(i + 1, j - 1 )  + Ci, j -  ,@(i, j - I) 
+ C i  - 1 ,  - @(i - 1 ,  j - 1) + Cj - 1 ,  j@(i  - 1, j )  + C j  - , , + l@(i - 1, j + 1) + Ci, j+ ,@(i, j + 1 ), (20) 

where 2 < i < imax- 1 ,2  dj <jmax- 1 and Cij are functions of the ay), a$) and a$) boundary constants 
as well as the transformed co-ordinate functions a, B and y. 

The global boundary conditions are specified by 

@(i, 1)laerofoil surface = upwash, l<idim,, ,  

1 d id i,,, , 

1 < j  <jmax , 
1 < j  <jma, . 

@(i,jmax ) I f a r  fie,d = free stream, 
@(ima, ,j)lwake =upper wake, 

@( 1 ,j)lwake =lower wake, 

The global boundary conditions together with the interior point solution specified in equa- 
tion (20) for @(i,j), where 2 < i < imax- l and 2 < j  <jmax- l,  lead to a system of algebraic equations. 
For a fixedj value, 

- Ci - 1, j@(i - 1,j) + @(i, j )  - Ci+ j@(i + 1,j) 
=ci+, ,  j + l @ ( i +  l , j +  l ) + c i - l ,  j +  ,@(i- l , j +  l )+Ci,  j+ l@( i , j+  1) 

+ C j + l ,  j - l @ ( i +  i , j - l )+Ci - l , j -  l @ ( i -  1,j- l)+ci, j-l@(i,j- 1). (22) 

The right-hand side of this equation is comprised of known quantities, i.e. the ( j -  1 )  terms are 
known from the boundary conditions ( j=2)  or the last sweep, with the ( j +  1 )  terms determined 
from the boundary condition ( j  =jmax- 1 )  or the previous iteration. 

Equation (22) can be written as a tridiagonal matrix, with the matrix solved by the Thomas 
algorithm for all j values (2<j<jmax- 1). This procedure is then iterated by successive over- 
relaxation until the entire solution converges. 

MODEL AND SOLUTION VERIFICATION 

To verify this mathematical model and locally analytic solution as well as to demonstrate the 
effects of grid refinement, predictions at zero incidence with a reduced frequency of 0.8 and a mid- 
chord elastic axis location are correlated with (1) Theodorsen’s classical solution16 for a flat plate 
aerofoil and (2) the solution of Atassi and Akai’ for a Joukowski aerofoil with 11.25% thickness 
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and 3.5% camber. The excellent correlation obtained for these two verification cases is shown in 
Figures 5 and 6,  which present the chordwise distributions of the complex unsteady pressure 
difference across the chordline of the oscillating flat plate and the Joukowski aerofoil respectively. 
In addition, the effect of grid refinement on the locally analytic predictions is demonstrated in 
Figure 6 for the oscillating Joukowski aerofoil. In particular, this figure also presents locally 
analytic predictions obtained on both a 140 x 25 and a 100 x 25 computational grid. As seen, 
there are only minimal differences between the two predictions. 

RESULTS 

This flow model and locally analytic solution are utilized to investigate the effects of aerofoil 
thickness and camber as well as mean flow incidence angle on both the steady and unsteady 
harmonic oscillating aerofoil aerodynamics. This is accomplished by considering a series of 
Joukowski aerofoils with elastic axis located at mid-chord and a value of 0-8 for the reduced 
frequency. The time required for a typical case is of the order of 350 CPU seconds on a Cyber 205 
vector processing computer. 

Thickness effects 

The effects of aerofoil thickness on the steady and oscillating aerofoil aerodynamics are 
investigated by considering three uncambered Joukowski aerofoils with thickness-to-chord ratios 
of lo%, 25% and 40% (Figure 7). For comparison purposes, a flat plate aerofoil is also 
considered. 
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Figure 5. Correlation of locally analytic prediction and classical solution for an oscillating flat plate 
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Figure 6. Locally analytic prediction correlation and grid refinement for an 11.25% thick, 3.5% camber, Joukowski 
aerofoil 

Figure 7. Joukowski aerofoils with lo%, 25% and 40% thickness-to-chord ratios 



924 H.-W. D. CHIANG AND S. FLEETER 

The predicted chordwise distributions of the steady velocity on the surfaces of the Joukowski 
and flat plate aerofoils are presented in Figure 8. The velocity distributions are symmetric on the 
aerofoil surfaces, as expected, with the aerofoil thickness resulting in a chordwise gradient in the 
surface velocity. The maximum steady velocity on the surfaces is located near the front of the 
aerofoil, but moves rearward as the thickness increases. 

The predicted chordwise distributions of the complex unsteady pressure on the surfaces of the 
oscillating aerofoils are presented in Figure 9 with the thickness-to-chord ratio as parameter. 
Analogous to the steady results, the unsteady pressure distributions are symmetric on the 
aerofoil surfaces, with the aerofoil thickness primarily affecting the unsteady surface pressure 
over the front portion of the aerofoil. Also, the maximum value of the real and imaginary parts of 
the unsteady surface pressure moves rearward with increasing thickness. 

To demonstrate more clearly the effect of aerofoil thickness on the unsteady aerodynamics, the 
complex unsteady pressure differences across the chordline of the aerofoil are calculated and 
presented in a magnitude and phase angle format in Figure 10. Both the phase angle and the 
magnitude of the unsteady pressure difference are dependent on the aerofoil thickness. As the 
thickness-to-chord ratio increases, the pressure difference phase angle decreases over the front 
40% of the chord and increases over the rear 60% of the chord. The maximum magnitude of the 
unsteady pressure difference decreases with increasing thickness-to-chord ratio and also moves 
aft on the aerofoil. 

Camber efeects 

Figure 11 shows the three Joukowski aerofoils utilized to investigate the effects of aerofoil 
camber. These aerofoils have lo%, 15'/0, and 20% camber, with each having a thickness-to-chord 
ratio of 20%. Also considered is the flat plate aerofoil as a reference. 

The predicted chordwise steady velocity distributions are presented in Figure 12. For non-zero 
camber, the velocities on the aerofoil surfaces become non-symmetric, as expected. As the camber 
increases, the velocity increases on the upper surface and decreases on the lower surface. 

i ! [  n 
3 0  

1 
0 20 40 60 80 100 

-2.01 
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Figure 8. Effect of thickness-to-chord ratio on the aerofoil surface steady velocity 
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Figure 9. Variation of the unsteady surface pressure distribution with thickness-to-chord ratio 

Figures 13 and 14 present the predicted chordwise distributions of the complex unsteady 
pressure on the oscillating aerofoil surfaces and the unsteady pressure differences across the 
chordline of the aerofoil, respectively, with camber as parameter. In the leading-edge region the 
cambered aerofoil results differ from the flat plate results but are in relative agreement with one 
another. Aft of the leading-edge region, increasing the camber results in a decrease in the 
magnitude of the unsteady pressure difference. The phase angle of the pressure difference 
decreases with increasing camber forward of 55% chord and increases aft of this chord location. 

Mean pow incidence effects 

Figure 15 depicts a Joukowski aerofoil with a 20% thickness-to-chord ratio and 5% camber at 
mean flow incidence angle values of 0", 5" and 10". The predicted aerofoil surface chordwise 
steady velocity distributions presented in Figure 16 are non-symmetric. As the incidence angle 
increases, the steady surface velocity increases on the upper surface and decreases on the lower 
surface, with the largest incidence effects being found over the front portion of the aerofoil. 

The complex unsteady pressure distributions on the aerofoil surfaces with incidence angle as 
parameter are presented in Figure 17. These distributions are a function of the incidence angle, 
with the largest effects apparent over the front portion of the aerofoil, analogous to the steady 
results. 

The unsteady pressure difference across the chordline of the aerofoil as a function of the mean 
flow incidence angle is shown in Figure 18. The phase lag is nearly independent of the incidence 
angle. However, the magnitude of the unsteady pressure difference is dependent on the incidence 
angle, with the largest effects found over the front portion of the aerofoil, analogous to the steady 
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Figure 11.  Joukowski aerofoils with lo%, 15% and 20% camber 
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Figure 12. Effect of aerofoil camber on the aerofoil surface steady velocity 
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Figure i 3 .  Variation of the unsteady surface pressure distribution with aerofoil camber 
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Figure 14. Variation of the unsteady pressure difference across the aerofoil chordline with aerofoil camber 
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Figure 15. A Joukowski aerofoil at mean flow incidence angles of O", 5" and 10" 

results. Also, as the incidence is increased, the magnitude of the unsteady pressure difference 
decreases over the front portion of the aerofoil, becoming nearly independent of the incidence 
angle aft of approximately the 25% chord location. 

CONCLUSIONS 

A complete first-order model and locally analytic solution method have been developed to 
analyse the effects of mean flow incidence and aerofoil camber and thickness on the incompress- 
ible aerodynamics of an oscillating aerofoil. This method incorporates analytic solutions, with the 
discrete algebraic equations which represent the differential flow field equations obtained from 
analytic solutions in individual grid elements. The complete flow field solution is then obtained by 
assembling these locally analytic solutions. 

The velocity potential was separated into steady and unsteady harmonic parts, with the 
unsteady potential further decomposed into circulatory and non-circulatory components. The 
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Figure 16. Effect of mean flow incidence angle on the aerofoil surface steady velocity 
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Figure 17. Variation of the unsteady surface pressure distribution with mean flow incidence angle 
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Figure 18. Variation of the unsteady pressure difference across the aerofoil chordline with mean Row incidence angle 

steady velocity potential is independent of the unsteady flow field. However, the unsteady flow is 
coupled to the steady flow field through the boundary conditions on the oscillating aerofoil. 

This model and solution method were shown to accurately predict the Theodorsen oscillating 
flat plate classical solution. Locally analytic solutions for a series of Joukowski aerofoils 
demonstrated the strong coupling between the aerofoil unsteady and steady flow fields, i.e. the 
strong dependence of the oscillating aerofoil aerodynamics on the steady flow effects of mean flow 
incidence and aerofoil camber and thickness. 
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NOMENCLATURE 

b aerofoil semi-chord, C/2 
k reduced frequency, o b l U ,  
UO steady chordwise velocity component 
VO steady normal velocity component 
urn 
vca 
W' upwash on aerofoil 

far-field steady chordwise velocity component 
far-field steady normal velocity component 
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non-dimensional chordwise co-ordinate, X / b  
elastic axis location 
non-dimensional normal co-ordinate, Y/b 
transformed chordwise co-ordinate 
transformed normal co-ordinate 
general velocity potential 
mean incidence angle 
steady velocity potential 
unsteady velocity potential 
circulatory unsteady velocity potential 
non-circulatory unsteady velocity potential 
shorthand representation for velocity potential Q0, WNc or Wc 
steady circulation constant 
unsteady circulation constant 
unsteady pressure 
oscillatory frequency 
amplitude of torsional oscillations 

Superscripts 

+ upper surface 
- lower surface 

REFERENCES 

1 .  J. H. Horlock, ‘Fluctuating lift forces on airfoils moving through transverse and cordwise gusts’, ASME J .  Basic Eng. 

2. W. R. Sears, ‘Some aspects of nonstationary airfoil theory and its practical applications’, 1. Aeronaut. Sci., 8 (3), 

3. H. Naumann and H. Yeh, ‘Lift and pressure fluctuations of a cambered airfoil under periodic gusts and applications 

4. M. E. Goldstein and H. Atassi, ‘A complete second order theory for the unsteady flow about an airfoil due to a 

5. H. Atassi and T. J. Akai, ‘Aerodynamic and aeroelastic characteristics of oscillating loaded cascades at low Mach 

6. J. R. Spreiter and A. Y. Alksne, ‘Thin airfoil theory based on approximate solution of the transonic flow equation’, 

7. J. R. Spreiter, ‘Aerodynamics of wings and bodies at transonic speeds’, J. Aerospace Sci., 26 (8), 465-487 (August 1959). 
8. J. R. Spreiter, ‘The local linearization method in transonic flow theory’, in K. Oswatitsch (ed.), Symp. Transsonicum, 

9. S .  S. Stahara and J. R. Spreiter, ‘Development of a nonlinear unsteady transonic flow theory’ NASA-CR-2258, June 

10. E. H. Dowell, ‘A simplified theory of oscillating airfoils in transonic flow’, in R. B. Kinney (ed.), Proc. Symp. on 

1 1 .  C. J. Chen, H. Naseri-Neshat and K. S. Ho, ‘Finite analytic numerical solution of heat transfer in two-dimensional 

12. C. J. Chen and Y. H. Yoon, ‘Finite analytic numerical solution of axisymmetric Navier-Stokes and energy equations’, 

13. C. J. Chen and P. Li, ‘Finite differential methods in heat conduction-application of analytic solution techniques’, 

14. C. J. Chen and P. Li, ‘The finite analytic method for steady and unsteady heat transfer problems’, ASME Paper 80- 

15. J. F. Thompson, F. C. Thames and C. W. Mastin, ‘Boundary fitted curvilinear coordinate systems for solution of 
partial differential equations on fields containing any number of arbitrary two-dimensional bodies’, NASA-CR 2729, 
1977. 

Series D,  90 (4), 494-500 (December 1968). 

104108 (January 1941). 

to turbomachinery’, ASME Paper 72-GT-30, 1972. 

periodic gust’, J. Fluid Mech., 14, 741-766 (1976). 

number’, ASME Paper 79-GT-11 I ,  1979. 

NACA-TR-1359, 1958. 

Springer-Verlag, Berlin, Gottingen, Heidelberg, 1964, pp. 92-109. 

1973. 

Unsteady Aerodynamics, University of Arizona, Tucson, July 1975, pp. 655-679. 

cavity flow’, J .  Numer. Heat Transfer, 4, 179-197 (1981). 

J .  Heat Transfer, 5, 6 3 9 4 5  (August 1983). 

ASME Paper 79- WAfHT-50, December 1979. 

HT-86, 1980. 

16. T. Theodorsen, ‘General theory of aerodynamic instability and the mechanism of flutter’, NACA-TR-496, 1935. 




